<u>layers of the Atmosphere</u>: Part I: Scale Model

Setting up the Layers:

- 1) Holding your paper portrait style, write the title "Scale Model of the Atmosphere" at the top of your paper.
- 2) 4 cm (40 mm) from the bottom of the paper draw a horizontal line across your paper. Label below the line "Earth's Surface".
- 3) Using the scale of 1 mm equals 1 km draw a line across your paper 16 mm above the Earth's surface.
- 4) Label this layer the "Troposphere".
- 5) Using the same scale draw a line 48 mm above the Earth's surface. Label this layer the "Stratosphere".
- 6) Draw a line 80 mm above the Earth's surface. Label this layer "Mesosphere".
- 7) Label the remaining part of the paper the "Thermosphere". Include on the label that it "continues far above the top of the paper".

Procedures:

Earth Surface:

- A. Color the Earth green or brown to represent land.
- B. Draw some houses, trees, or other objects you find on the Earth's surface.
- **Troposphere:** The 1st layer of the atmosphere, the troposphere, extends 16 km (10 miles) above Earth.
 - A. Within the troposphere label the scale you are using, "Scale: 1 mm = 1 km".
 - B. Draw clouds in this layer to indicate this is where weather occurs.
 - C. The temperature drops as you move up in the troposphere so label the layer "warm to cold".
 - D. At the top of the troposphere are very strong winds moving eastward called the jet stream. This is also the location where passenger planes fly. **Draw an airplane and an arrow moving from left to right** to symbolize the location and direction of the jet stream.
- Stratosphere: The 2nd atmospheric layer is called the stratosphere. It extends 48 km (30 miles) above the Earth.
 - A. The ozone layer is in the stratosphere. Ozone is made of three oxygen atoms and absorbs harmful ultraviolet radiation. To demonstrate this draw molecules of ozone (O₃) with lightning bolts going towards the ozone.
 - B. Temperature increases in the stratosphere because ultraviolet radiation is absorbed, so label the layer "cold to warm".
- (F) Mesosphere: The 3rd layer of the atmosphere is called the mesosphere. It extends 80 km (50 miles) above the Earth.
 - A. This is the coldest layer with temperatures as low as -85°C (-120°F). Draw a thermometer and snow flakes in this layer to symbolize the cold temps.
 - B. Once in this layer you are now above 99.9% of the molecules that make up the atmosphere. The air is extremely thin so label this layer as "less than 0.1% of air molecules".
 - C. Many meteoroids burn up in the mesosphere because they're starting to collide with air molecules at extremely high speeds, so **draw and label a meteor**.
- Thermosphere: The fourth layer of the atmosphere is the thermosphere. It extends to outer space, thousands of kilometers above the Earth's surface.
 - A. The thermosphere is extremely hot because of radiation that is absorbed so **draw flames** to symbolize the hot temperature.
 - B. Satellites orbit the Earth in this layer because there are so few air molecules. **Draw and label a satellite** at the top of your paper.

<u>layers of the Atmosphere</u>: Part II: Graphing Pressure and Temperature

Purpose: Analyze the relationship between altitude, temperature and pressure.

Directions:

- 1. Graph temperature and pressure
 - A. Hold a piece of graph paper vertically.
 - B. Place altitude on the vertical axis. Number vertically from 0 to 250 using a scale of
 - 1 block = 10 km. Create a break in altitude in your axis and then near the top of the paper put 500 km.
 - C. Both *pressure* and *temperature* will be on the horizontal axis. Number from the origin to the right from 0 to 1200 *millibars* using the scale of 1 block = 100 mb. Label this axis "Pressure (mb)".
 - D. Skip approximately two blocks and shade them in vertically to the top of your graph paper.
 - E. Begin labeling the lines for temperature. Begin with -80°C and label up to 60°C using the scale 1 block = 10°C. Label this axis "Temperature (°C)".
 - F. Plot the following data and connect the data points. You should end up with two separate line graphs side by side: one for temp and one for pressure.

Altitude (km)	Pressure (millibars)
0	1000
2	850
4	700
6	500
8	300
10	200
14	100
20	50
26	25
31	10
35	5
48	1
500	0

Altitude (km)	Temp (°C)
0	20
10	-57
20	-57
48	0
55	0
80	-80
90	-80
110	20
120	60

2. Layers of the atmosphere

- A. Draw lines to separate the layers of the atmosphere. These lines will be drawn horizontally across the graph and will be parallel to the horizontal axis. Label the layers.
 - Troposphere 10 km
 - Stratosphere 50 km
 - Mesosphere 80 km
 - Thermosphere Extends 80 km and above
- B. Label the short vertical lines where the temperature stays steady. (the "pauses")
- C. Draw mountains and clouds in the troposphere. Shade the ozone layer pink with colored pencil and draw red ozone molecules in the layer.

Analysis Questions: Answer the following questions in your science journal.

- 1) Which layer of the atmosphere has the greatest pressure? Why?
- 2) Why does temperature increase as you get higher in some layers?
- 3) In which layer of the atmosphere does the weather take place?
- 4) Describe the relationship between altitude and pressure.

